Recent developments in exponential random graph (p*) models for social networks
نویسندگان
چکیده
This article reviews new specifications for exponential random graph models proposed by Snijders et al. [Snijders, T.A.B., Pattison, P., Robins, G.L., Handcock, M., 2006. New specifications for exponential random graph models. Sociological Methodology] and demonstrates their improvement over homogeneous Markov random graph models in fitting empirical network data. Not only do the new specifications show improvements in goodness of fit for various data sets, but they also help to avoid the problem of neardegeneracy that often afflicts the fitting of Markov random graph models in practice, particularly to network data exhibiting high levels of transitivity. The inclusion of a new higher order transitivity statistic allows estimation of parameters of exponential graph models for many (but not all) cases where it is impossible to estimate parameters of homogeneous Markov graph models. The new specifications were used to model a large number of classical small-scale network data sets and showed a dramatically better performance than Markov graph models. We also review three current programs for obtaining maximum likelihood estimates of model parameters and we compare these Monte Carlo maximum likelihood estimates with less accurate pseudo-likelihood estimates. Finally, we discuss whether homogeneous Markov random graph models may be superseded by the new specifications, and how additional elaborations may further improve model performance. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
An introduction to exponential random graph (p*) models for social networks
This article provides an introductory summary to the formulation and application of exponential random graph models for social networks. The possible ties among nodes of a network are regarded as random variables, and assumptions about dependencies among these random tie variables determine the general form of the exponential random graph model for the network. Examples of different dependence ...
متن کاملMissing data in networks: exponential random graph (p∗) models for networks with non-respondents
Survey studies of complete social networks often involve non-respondents, whereby certain people within the “boundary” of a network do not complete a sociometric questionnaire—either by their own choice or by the design of the study—yet are still nominated by other respondents as network partners. We develop exponential random graph (p∗) models for network data with non-respondents. We model re...
متن کاملAssessing Degeneracy in Statistical Models of Social Networks
This paper presents recent advances in the statistical modeling of random graphs that have an impact on the empirical study of social networks. Statistical exponential family models (Wasserman and Pattison 1996) are a generalization of the Markov random graph models introduced by Frank and Strauss (1986), which in turn are derived from developments in spatial statistics (Besag 1974). These mode...
متن کاملAdvances in exponential random graph (p*) models
Editorial Advances in exponential random graph (p *) models Statistical approaches to social networks have a rather long history. Few now recall that Moreno and Jennings (1938) in the very first edition of Sociometry compared an observed network against a null distribution of graphs to investigate the prevalence of what they called social configurations (long before the much later terms motif o...
متن کاملAuxiliary Parameter MCMC for Exponential Random Graph Models
Exponential random graph models (ERGMs) are a well-established family of statistical models for analyzing social networks. Computational complexity has so far limited the appeal of ERGMs for the analysis of large social networks. Efficient computational methods are highly desirable in order to extend the empirical scope of ERGMs. In this paper we report results of a research project on the deve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Social Networks
دوره 29 شماره
صفحات -
تاریخ انتشار 2007